

## Vanta Element-S Alloy Plus LODs

## Vanta<sup>™</sup> Element-S Analyzer Affordable XRF Testing

Evident is a leader in XRF technology with a reputation for durability, quality, and accuracy. Vanta<sup>™</sup> handheld XRF analyzers incorporate Axon Technology<sup>™</sup> to deliver higher X-ray counts per second and fast calculations to identify alloy grades in as little as 1–2 seconds in even the most challenging environments.

The **Vanta Element-S** model can measure elements from concentrations as low as several parts per million (ppm) all the way up to 100%. The limits of detection (LODs) represent the calculated value using three sigma 99.7% confidence level. The LOD for each element is a function of the testing time. Please contact your local Evident representative for more information.

The LODs reported here are based on automatically selected beam conditions (kV,  $\mu$ A, and filter settings) and a measurement time of 60 seconds:

- Several certified alloy standards were used for each base material
- The iron (Fe) category contains both low alloy steels and stainless steels.
- LODs are, in general, lower for low alloy steels than with stainless steel.
- Actual working samples may contain interfering elements, so the actual working LODs for some samples may be higher than those presented here.
- The commonly accepted level for the limit of quantification (LOQ), or ability to quantify the concentration of an element, is 10 sigma.
- Only commonly occurring elements in each base material are listed. Vanta analyzers are capable of measuring many other elements.

| Vanta Element-S Alloy Plus LOD (ppm) |         |         |         |
|--------------------------------------|---------|---------|---------|
| Element                              | Fe base | Cu base | Al base |
| Mg                                   | -       | _       | 3975    |
| Al                                   | 1100    | 5450    | _       |
| Si                                   | 380     | 600     | 200     |
| Р                                    | 200     | 165     | _       |
| S                                    | 285     | 5       | _       |
| Ti                                   | 210     | _       | 230     |
| V                                    | 55      | _       | 110     |
| Cr                                   | 45      | 35      | 38      |
| Mn                                   | 60      | 22      | 27      |
| Fe                                   | -       | 45      | 11      |
| Со                                   | 220     | 35      | _       |
| Ni                                   | 45      | 40      | 11      |
| Cu                                   | 35      | _       | 14      |
| Zn                                   | 55      | 100     | 11      |
| W                                    | 50      | _       | _       |
| Pb                                   | 45      | 22      | 5       |
| Bi                                   | 70      | 65      | 5       |
| Zr                                   | 16      | _       | 3       |
| Nb                                   | 7       | _       | _       |
| Mo                                   | 8       | _       | -       |
| Sn                                   | 45      | 55      | 22      |
| Sb                                   | 80      | 65      | 11      |

**EvidentScientific.com** 

